3.572 \(\int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=68 \[ -\frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

-2*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4*a*b*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a^2*sin(d*x+c)/d/cos(d*
x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2789, 2641, 3012, 2639} \[ -\frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(3/2),x]

[Out]

(-2*(a^2 - b^2)*EllipticE[(c + d*x)/2, 2])/d + (4*a*b*EllipticF[(c + d*x)/2, 2])/d + (2*a^2*Sin[c + d*x])/(d*S
qrt[Cos[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2789

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Dist[(2*c*d)/b
, Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c,
 d, e, f, m}, x]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {3}{2}}(c+d x)} \, dx &=(2 a b) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\int \frac {a^2+b^2 \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\left (a^2-b^2\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 62, normalized size = 0.91 \[ \frac {2 \left (\left (b^2-a^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)}}+2 b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(3/2),x]

[Out]

(2*((-a^2 + b^2)*EllipticE[(c + d*x)/2, 2] + a*(2*b*EllipticF[(c + d*x)/2, 2] + (a*Sin[c + d*x])/Sqrt[Cos[c +
d*x]])))/d

________________________________________________________________________________________

fricas [F]  time = 0.75, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.69, size = 202, normalized size = 2.97 \[ -\frac {2 \left (2 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-2 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2/cos(d*x+c)^(3/2),x)

[Out]

-2*(2*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-2*a^2*cos(1/
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 1.13, size = 81, normalized size = 1.19 \[ \frac {2\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^2/cos(c + d*x)^(3/2),x)

[Out]

(2*b^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*a^2*sin(c + d*x)*hypergeom(
[-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2/cos(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________